๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search

Concepts4

Category

๐Ÿ”ทAllโˆ‘Mathโš™๏ธAlgo๐Ÿ—‚๏ธDS๐Ÿ“šTheory

Level

AllBeginnerIntermediateAdvanced
Filtering by:
#konig theorem
โš™๏ธAlgorithmIntermediate

Tree DP - Matching and Covering

Tree DP solves matching, vertex cover, and independent set on trees in linear time using small state transitions per node.

#tree dp#maximum matching#vertex cover+12
โš™๏ธAlgorithmIntermediate

Bipartite Matching - Hopcroft-Karp

Hopcroftโ€“Karp computes maximum matching in a bipartite graph in O(E \sqrt{V}) time, which is asymptotically faster than repeated DFS (Kuhn's algorithm).

#hopcroft karp#bipartite matching#augmenting path+11
โš™๏ธAlgorithmIntermediate

Bipartite Matching - Kuhn's Algorithm

Kuhnโ€™s algorithm finds a maximum matching in a bipartite graph by repeatedly searching for augmenting paths using DFS.

#bipartite matching#kuhn algorithm#augmenting path+12
โš™๏ธAlgorithmIntermediate

Flow - Modeling Techniques

Many classic problems can be modeled as a maximum flow problem by building the right network and capacities.

#max flow#dinic#bipartite matching+12