🎓How I Study AIHISA
📖Read
📄Papers📰Blogs🎬Courses
💡Learn
🛤️Paths📚Topics💡Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search

Concepts4

Category

🔷All∑Math⚙️Algo🗂️DS📚Theory

Level

AllBeginnerIntermediateAdvanced
Filtering by:
#rademacher complexity
📚TheoryAdvanced

Deep Learning Generalization Theory

Deep learning generalization theory tries to explain why overparameterized networks can fit (interpolate) training data yet still perform well on new data.

#generalization#implicit regularization#minimum norm+12
📚TheoryAdvanced

Statistical Learning Theory

Statistical learning theory explains why a model that fits training data can still predict well on unseen data by relating true risk to empirical risk plus a complexity term.

#statistical learning theory#empirical risk minimization#structural risk minimization+11
📚TheoryAdvanced

VC Dimension

VC dimension measures how many distinct labelings a hypothesis class can realize on any set of points of a given size.

#vc dimension#vapnik chervonenkis#shattering+12
📚TheoryAdvanced

Rademacher Complexity

Rademacher complexity is a data-dependent measure of how well a function class can fit random noise on a given sample.

#rademacher complexity#empirical rademacher#generalization bounds+12