πŸŽ“How I Study AIHISA
πŸ“–Read
πŸ“„PapersπŸ“°Blogs🎬Courses
πŸ’‘Learn
πŸ›€οΈPathsπŸ“šTopicsπŸ’‘Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search

Concepts3

Category

πŸ”·Allβˆ‘Mathβš™οΈAlgoπŸ—‚οΈDSπŸ“šTheory

Level

AllBeginnerIntermediateAdvanced
Filtering by:
#cross-entropy
πŸ“šTheoryIntermediate

KL Divergence (Kullback-Leibler Divergence)

Kullback–Leibler (KL) divergence measures how one probability distribution P devotes probability mass differently from a reference distribution Q.

#kl divergence#kullback-leibler#cross-entropy+12
πŸ“šTheoryIntermediate

Shannon Entropy

Shannon entropy quantifies the average uncertainty or information content of a random variable in bits when using base-2 logarithms.

#shannon entropy#information gain#mutual information+12
πŸ“šTheoryIntermediate

Information Theory

Information theory quantifies uncertainty and information using measures like entropy, cross-entropy, KL divergence, and mutual information.

#entropy#cross-entropy#kl divergence+12