πŸŽ“How I Study AIHISA
πŸ“–Read
πŸ“„PapersπŸ“°Blogs🎬Courses
πŸ’‘Learn
πŸ›€οΈPathsπŸ“šTopicsπŸ’‘Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search

Concepts2

Category

πŸ”·Allβˆ‘Mathβš™οΈAlgoπŸ—‚οΈDSπŸ“šTheory

Level

AllBeginnerIntermediateAdvanced
Filtering by:
#actor-critic
πŸ“šTheoryAdvanced

Policy Gradient Theorem

The policy gradient theorem tells us how to push a stochastic policy’s parameters to increase expected return by following the gradient of expected rewards.

#policy gradient#reinforce#actor-critic+11
πŸ“šTheoryAdvanced

Reinforcement Learning Theory

Reinforcement Learning (RL) studies how an agent learns to act in an environment to maximize long-term cumulative reward.

#reinforcement learning#mdp#bellman equation+12