Concepts6

📚TheoryIntermediate

Concentration Inequalities

Concentration inequalities give high-probability bounds that random outcomes stay close to their expectations, even without knowing the full distribution.

#concentration inequalities#hoeffding inequality#chernoff bound+12
📚TheoryAdvanced

Information-Theoretic Lower Bounds

Information-theoretic lower bounds tell you the best possible performance any learning algorithm can achieve, regardless of cleverness or compute.

#information-theoretic lower bounds#fano inequality#le cam method+12
📚TheoryAdvanced

Reinforcement Learning Theory

Reinforcement Learning (RL) studies how an agent learns to act in an environment to maximize long-term cumulative reward.

#reinforcement learning#mdp#bellman equation+12
📚TheoryAdvanced

Statistical Learning Theory

Statistical learning theory explains why a model that fits training data can still predict well on unseen data by relating true risk to empirical risk plus a complexity term.

#statistical learning theory#empirical risk minimization#structural risk minimization+11
📚TheoryIntermediate

PAC Learning

PAC learning formalizes when a learner can probably (with probability at least 1−δ) and approximately (error at most ε) succeed using a polynomial number of samples.

#pac learning#agnostic learning#vc dimension+12
📚TheoryAdvanced

VC Dimension

VC dimension measures how many distinct labelings a hypothesis class can realize on any set of points of a given size.

#vc dimension#vapnik chervonenkis#shattering+12