🎓How I Study AIHISA
📖Read
📄Papers📰Blogs🎬Courses
💡Learn
🛤️Paths📚Topics💡Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search

Concepts2

Category

🔷All∑Math⚙️Algo🗂️DS📚Theory

Level

AllBeginnerIntermediateAdvanced
Filtering by:
#flat minima
📚TheoryAdvanced

PAC-Bayes Theory

PAC-Bayes provides high-probability generalization bounds for randomized predictors by comparing a data-dependent posterior Q to a fixed, data-independent prior P through KL(Q||P).

#pac-bayes#generalization bound#kl divergence+12
📚TheoryAdvanced

Deep Learning Generalization Theory

Deep learning generalization theory tries to explain why overparameterized networks can fit (interpolate) training data yet still perform well on new data.

#generalization#implicit regularization#minimum norm+12