🎓How I Study AIHISA
📖Read
📄Papers📰Blogs🎬Courses
💡Learn
🛤️Paths📚Topics💡Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search

Concepts4

Category

🔷All∑Math⚙️Algo🗂️DS📚Theory

Level

AllBeginnerIntermediateAdvanced
Filtering by:
#kl divergence
📚TheoryAdvanced

PAC-Bayes Theory

PAC-Bayes provides high-probability generalization bounds for randomized predictors by comparing a data-dependent posterior Q to a fixed, data-independent prior P through KL(Q||P).

#pac-bayes#generalization bound#kl divergence+12
📚TheoryAdvanced

Information-Theoretic Lower Bounds

Information-theoretic lower bounds tell you the best possible performance any learning algorithm can achieve, regardless of cleverness or compute.

#information-theoretic lower bounds#fano inequality#le cam method+12
📚TheoryAdvanced

Variational Inference Theory

Variational Inference (VI) replaces an intractable posterior with a simpler distribution and optimizes it by minimizing KL divergence, which is equivalent to maximizing the ELBO.

#variational inference#elbo#kl divergence+12
📚TheoryAdvanced

Information Bottleneck Theory

Information Bottleneck (IB) studies how to compress an input X into a representation Z that still preserves what is needed to predict Y.

#information bottleneck#mutual information#variational information bottleneck+12