๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search

Concepts4

Category

๐Ÿ”ทAllโˆ‘Mathโš™๏ธAlgo๐Ÿ—‚๏ธDS๐Ÿ“šTheory

Level

AllBeginnerIntermediateAdvanced
Filtering by:
#mobius inversion
โˆ‘MathAdvanced

Mรถbius Function and Inversion

The Mรถbius function ฮผ(n) is 0 if n has a squared prime factor, otherwise it is (-1)^k where k is the number of distinct prime factors.

#mobius function#mobius inversion#dirichlet convolution+12
โˆ‘MathAdvanced

Divisor Function Sums

Summing the divisor function d(i) up to n equals counting lattice points under the hyperbola xy โ‰ค n, which can be done in O(โˆšn) using floor-division blocks.

#divisor function#euler totient#mobius function+11
โš™๏ธAlgorithmAdvanced

Subset Sum Convolution

Subset Sum Convolution (often called Subset Convolution) computes C[S] by summing A[T]ร—B[U] over all disjoint pairs T and U whose union is S.

#subset convolution#subset sum convolution#sos dp+11
โš™๏ธAlgorithmAdvanced

Sum over Subsets (SOS) DP

Sum over Subsets (SOS) DP lets you compute F[mask] = sum of A[submask] over all submasks in O(n 2^n) instead of O(3^n).

#sos dp#subset zeta transform#mobius inversion+11