πŸŽ“How I Study AIHISA
πŸ“–Read
πŸ“„PapersπŸ“°Blogs🎬Courses
πŸ’‘Learn
πŸ›€οΈPathsπŸ“šTopicsπŸ’‘Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search

Concepts5

Category

πŸ”·Allβˆ‘Mathβš™οΈAlgoπŸ—‚οΈDSπŸ“šTheory

Level

AllBeginnerIntermediateAdvanced
Filtering by:
#linear recurrence
βš™οΈAlgorithmAdvanced

Matrix Exponentiation - Advanced

Matrix exponentiation turns repeated linear transitions into fast O(n^{3} log k) computation using exponentiation by squaring.

#matrix exponentiation#adjacency matrix#walk counting+12
βˆ‘MathAdvanced

Generating Functions - OGF

An ordinary generating function (OGF) encodes a sequence (a_n) as a formal power series A(x) = \sum_{n \ge 0} a_n x^n.

#ordinary generating function#ogf#coefficient extraction+12
βš™οΈAlgorithmIntermediate

Matrix Exponentiation

Matrix exponentiation turns repeated linear transitions into a single fast power of a matrix using exponentiation by squaring.

#matrix exponentiation#binary exponentiation#companion matrix+11
βˆ‘MathAdvanced

Berlekamp-Massey Algorithm

Berlekamp–Massey (BM) finds the shortest linear recurrence that exactly fits a given sequence over a field (e.g., modulo a prime).

#berlekamp-massey#linear recurrence#minimal polynomial+11
βˆ‘MathAdvanced

Linear Recurrence

A linear recurrence defines each term as a fixed linear combination of a small, fixed number of previous terms.

#linear recurrence#matrix exponentiation#kitamasa+12