πŸŽ“How I Study AIHISA
πŸ“–Read
πŸ“„PapersπŸ“°Blogs🎬Courses
πŸ’‘Learn
πŸ›€οΈPathsπŸ“šTopicsπŸ’‘Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search

Concepts5

Category

πŸ”·Allβˆ‘Mathβš™οΈAlgoπŸ—‚οΈDSπŸ“šTheory

Level

AllBeginnerIntermediateAdvanced
Filtering by:
#mobius inversion
βˆ‘MathAdvanced

MΓΆbius Function and Inversion

The MΓΆbius function ΞΌ(n) is 0 if n has a squared prime factor, otherwise it is (-1)^k where k is the number of distinct prime factors.

#mobius function#mobius inversion#dirichlet convolution+12
βˆ‘MathAdvanced

Divisor Function Sums

Summing the divisor function d(i) up to n equals counting lattice points under the hyperbola xy ≀ n, which can be done in O(√n) using floor-division blocks.

#divisor function#euler totient#mobius function+11
βˆ‘MathIntermediate

Multiplicative Functions

A multiplicative function is an arithmetic function f with f(mn) = f(m)f(n) whenever gcd(m, n) = 1.

#multiplicative function#dirichlet convolution#mobius function+12
βš™οΈAlgorithmAdvanced

Subset Sum Convolution

Subset Sum Convolution (often called Subset Convolution) computes C[S] by summing A[T]Γ—B[U] over all disjoint pairs T and U whose union is S.

#subset convolution#subset sum convolution#sos dp+11
βš™οΈAlgorithmAdvanced

Sum over Subsets (SOS) DP

Sum over Subsets (SOS) DP lets you compute F[mask] = sum of A[submask] over all submasks in O(n 2^n) instead of O(3^n).

#sos dp#subset zeta transform#mobius inversion+11