๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers1

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#reward modeling

RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System

Beginner
Yinjie Wang, Tianbao Xie et al.Feb 2arXiv

RLAnything is a new reinforcement learning (RL) framework that trains three things together at once: the policy (the agent), the reward model (the judge), and the environment (the tasks).

#reinforcement learning#closed-loop optimization#reward modeling