๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers2

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#BrowseComp

RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents

Intermediate
Jialiang Zhu, Gongrui Zhang et al.Feb 2arXiv

Re-TRAC is a new way for AI search agents to learn from each try, write a clean summary of what happened, and then use that summary to do better on the next try.

#Re-TRAC#trajectory compression#deep research agents

Inference-Time Scaling of Verification: Self-Evolving Deep Research Agents via Test-Time Rubric-Guided Verification

Intermediate
Yuxuan Wan, Tianqing Fang et al.Jan 22arXiv

DeepVerifier is a plug-in checker that helps Deep Research Agents catch and fix their own mistakes while they are working, without retraining.

#Deep Research Agents#verification asymmetry#rubrics-based feedback