๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers2

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#LLM post-training

Approximation of Log-Partition Function in Policy Mirror Descent Induces Implicit Regularization for LLM Post-Training

Intermediate
Zhenghao Xu, Qin Lu et al.Feb 5arXiv

The paper studies a simple way to train giant language models with reinforcement learning by replacing a hard-to-compute term (the log-partition function) with something easy: the mean reward.

#Policy Mirror Descent#KL regularization#chi-squared regularization

MentraSuite: Post-Training Large Language Models for Mental Health Reasoning and Assessment

Intermediate
Mengxi Xiao, Kailai Yang et al.Dec 10arXiv

MentraSuite is a complete toolkit that teaches large language models (LLMs) to reason about mental health step by step, not just sound caring.

#mental health reasoning#LLM post-training#supervised fine-tuning