๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers15

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#LoRA

Omni-Attribute: Open-vocabulary Attribute Encoder for Visual Concept Personalization

Intermediate
Tsai-Shien Chen, Aliaksandr Siarohin et al.Dec 11arXiv

Omni-Attribute is a new image encoder that learns just the parts of a picture you ask for (like hairstyle or lighting) and ignores the rest.

#open-vocabulary attribute encoder#attribute disentanglement#visual concept personalization

InfiniteVL: Synergizing Linear and Sparse Attention for Highly-Efficient, Unlimited-Input Vision-Language Models

Intermediate
Hongyuan Tao, Bencheng Liao et al.Dec 9arXiv

InfiniteVL is a vision-language model that mixes two ideas: local focus with Sliding Window Attention and long-term memory with a linear module called Gated DeltaNet.

#InfiniteVL#linear attention#Gated DeltaNet

Position: Universal Aesthetic Alignment Narrows Artistic Expression

Intermediate
Wenqi Marshall Guo, Qingyun Qian et al.Dec 9arXiv

The paper shows that many AI image generators are trained to prefer one popular idea of beauty, even when a user clearly asks for something messy, dark, blurry, or emotionally heavy.

#universal aesthetic alignment#aesthetic pluralism#reward models
12