πŸŽ“How I Study AIHISA
πŸ“–Read
πŸ“„PapersπŸ“°Blogs🎬Courses
πŸ’‘Learn
πŸ›€οΈPathsπŸ“šTopicsπŸ’‘Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers3

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#hard negative mining

RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval

Intermediate
Tyler Skow, Alexander Martin et al.Feb 2arXiv

RANKVIDEO is a video-native reasoning reranker that helps search engines find the right videos for a text query by directly looking at the video’s visuals and audio, not just text captions.

#text-to-video retrieval#video-native reranking#multimodal reasoning

JudgeRLVR: Judge First, Generate Second for Efficient Reasoning

Intermediate
Jiangshan Duo, Hanyu Li et al.Jan 13arXiv

JudgeRLVR teaches a model to be a strict judge of answers before it learns to generate them, which trims bad ideas early.

#RLVR#judge-then-generate#discriminative supervision

Qwen3-VL-Embedding and Qwen3-VL-Reranker: A Unified Framework for State-of-the-Art Multimodal Retrieval and Ranking

Intermediate
Mingxin Li, Yanzhao Zhang et al.Jan 8arXiv

This paper builds two teamwork models, Qwen3-VL-Embedding and Qwen3-VL-Reranker, that understand text, images, visual documents, and videos in one shared space so search works across all of them.

#multimodal retrieval#unified embedding space#cross-encoder reranker