๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers3

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#out-of-distribution generalization

ToolPRMBench: Evaluating and Advancing Process Reward Models for Tool-using Agents

Intermediate
Dawei Li, Yuguang Yao et al.Jan 18arXiv

ToolPRMBench is a new benchmark that checks, step by step, whether an AI agent using tools picks the right next action.

#process reward model#tool-using agents#offline sampling

WebGym: Scaling Training Environments for Visual Web Agents with Realistic Tasks

Intermediate
Hao Bai, Alexey Taymanov et al.Jan 5arXiv

WebGym is a giant practice world (almost 300,000 tasks) that lets AI web agents learn on real, ever-changing websites instead of tiny, fake ones.

#WebGym#visual web agents#vision-language models

From Imitation to Discrimination: Toward A Generalized Curriculum Advantage Mechanism Enhancing Cross-Domain Reasoning Tasks

Intermediate
Changpeng Yang, Jinyang Wu et al.Dec 2arXiv

This paper teaches AI models to reason better by first copying only good examples and later learning from mistakes too.

#Curriculum Advantage Policy Optimization#advantage-based RL#imitation learning