🎓How I Study AIHISA
📖Read
📄Papers📰Blogs🎬Courses
💡Learn
🛤️Paths📚Topics💡Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers105

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#reinforcement learning

X-Coder: Advancing Competitive Programming with Fully Synthetic Tasks, Solutions, and Tests

Intermediate
Jie Wu, Haoling Li et al.Jan 11arXiv

X-Coder shows that models can learn expert-level competitive programming using data that is 100% synthetic—no real contest problems needed.

#competitive programming#synthetic data generation#feature-based synthesis

LSRIF: Logic-Structured Reinforcement Learning for Instruction Following

Intermediate
Qingyu Ren, Qianyu He et al.Jan 10arXiv

Real instructions often have logic like and first-then and if-else and this paper teaches models to notice and obey that logic.

#instruction following#logical structures#parallel constraints

Chaining the Evidence: Robust Reinforcement Learning for Deep Search Agents with Citation-Aware Rubric Rewards

Intermediate
Jiajie Zhang, Xin Lv et al.Jan 9arXiv

The paper fixes a big problem in training web-searching AI: rewarding only the final answer makes agents cut corners and sometimes hallucinate.

#deep search agents#reinforcement learning#rubric rewards

The Molecular Structure of Thought: Mapping the Topology of Long Chain-of-Thought Reasoning

Intermediate
Qiguang Chen, Yantao Du et al.Jan 9arXiv

This paper says long chain-of-thought (Long CoT) works best when it follows a 'molecular' pattern with three kinds of thinking bonds: Deep-Reasoning, Self-Reflection, and Self-Exploration.

#Long Chain-of-Thought#reasoning bonds#Deep Reasoning

EnvScaler: Scaling Tool-Interactive Environments for LLM Agent via Programmatic Synthesis

Intermediate
Xiaoshuai Song, Haofei Chang et al.Jan 9arXiv

EnvScaler is an automatic factory that builds many safe, rule-following practice worlds where AI agents can talk to users and call tools, just like real apps.

#EnvScaler#tool-interactive environments#programmatic synthesis

VideoAuto-R1: Video Auto Reasoning via Thinking Once, Answering Twice

Intermediate
Shuming Liu, Mingchen Zhuge et al.Jan 8arXiv

The paper asks a simple question: do video AIs really need to “think out loud” every time, or can they answer quickly most of the time and think deeply only when needed?

#video reasoning#adaptive reasoning#early exit

RelayLLM: Efficient Reasoning via Collaborative Decoding

Intermediate
Chengsong Huang, Tong Zheng et al.Jan 8arXiv

RelayLLM lets a small model do the talking and only asks a big model for help on a few, truly hard tokens.

#token-level collaboration#<call>n</call> command#collaborative decoding

TourPlanner: A Competitive Consensus Framework with Constraint-Gated Reinforcement Learning for Travel Planning

Intermediate
Yinuo Wang, Mining Tan et al.Jan 8arXiv

TourPlanner is a travel-planning system that first gathers the right places, then lets multiple expert ‘voices’ debate plans, and finally polishes the winner with a learning method that follows rules before style.

#travel planning#multi-agent reasoning#chain-of-thought

TCAndon-Router: Adaptive Reasoning Router for Multi-Agent Collaboration

Intermediate
Jiuzhou Zhao, Chunrong Chen et al.Jan 8arXiv

Multi-agent systems are like teams of expert helpers; the tricky part is choosing which helpers to ask for each question.

#multi-agent systems#routing#reasoning chain

ROI-Reasoning: Rational Optimization for Inference via Pre-Computation Meta-Cognition

Intermediate
Muyang Zhao, Qi Qi et al.Jan 7arXiv

The paper teaches AI models to plan their thinking time like a smart test-taker who has to finish several questions before the bell rings.

#meta-cognition#budgeted reasoning#token budget

Unified Thinker: A General Reasoning Modular Core for Image Generation

Intermediate
Sashuai Zhou, Qiang Zhou et al.Jan 6arXiv

Unified Thinker separates “thinking” (planning) from “drawing” (image generation) so complex instructions get turned into clear, doable steps before any pixels are painted.

#reasoning-aware image generation#structured planning#edit-only prompt

Talk2Move: Reinforcement Learning for Text-Instructed Object-Level Geometric Transformation in Scenes

Intermediate
Jing Tan, Zhaoyang Zhang et al.Jan 5arXiv

Talk2Move is a training recipe that lets an image editor move, rotate, and resize the exact object you mention using plain text, while keeping the rest of the picture stable.

#text-guided image editing#object-level transformation#reinforcement learning
34567