๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers5

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#sample efficiency

PromptRL: Prompt Matters in RL for Flow-Based Image Generation

Intermediate
Fu-Yun Wang, Han Zhang et al.Feb 1arXiv

PromptRL teaches a language model to rewrite prompts while a flow-based image model learns to draw, and both are trained together using the same rewards.

#PromptRL#flow matching#reinforcement learning

Scaling Multiagent Systems with Process Rewards

Intermediate
Ed Li, Junyu Ren et al.Jan 30arXiv

This paper teaches AI teams to get better by scoring every move they make, not just the final answer.

#multiagent reinforcement learning#process rewards#AI feedback

Spark: Strategic Policy-Aware Exploration via Dynamic Branching for Long-Horizon Agentic Learning

Intermediate
Jinyang Wu, Shuo Yang et al.Jan 28arXiv

SPARK is a new way to train AI agents that saves compute by exploring more only at the most important moments.

#SPARK#dynamic branching#strategic exploration

GARDO: Reinforcing Diffusion Models without Reward Hacking

Intermediate
Haoran He, Yuxiao Ye et al.Dec 30arXiv

GARDO is a new way to fine-tune text-to-image diffusion models with reinforcement learning without getting tricked by bad reward signals.

#GARDO#reward hacking#gated KL regularization

TreeGRPO: Tree-Advantage GRPO for Online RL Post-Training of Diffusion Models

Intermediate
Zheng Ding, Weirui YeDec 9arXiv

TreeGRPO teaches image generators using a smart branching tree so each training run produces many useful learning signals instead of just one.

#TreeGRPO#reinforcement learning#diffusion models