๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers2

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#Agentic Reinforcement Learning

Exploring Reasoning Reward Model for Agents

Intermediate
Kaixuan Fan, Kaituo Feng et al.Jan 29arXiv

The paper teaches AI agents better by grading not just their final answers, but also how they think and use tools along the way.

#Agentic Reinforcement Learning#Reasoning Reward Model#Process Supervision

AT$^2$PO: Agentic Turn-based Policy Optimization via Tree Search

Intermediate
Zefang Zong, Dingwei Chen et al.Jan 8arXiv

AT2PO is a new way to train AI agents that work in several turns, like asking the web a question, reading the result, and trying again.

#Agentic Reinforcement Learning#Turn-level Optimization#Tree Search