πŸŽ“How I Study AIHISA
πŸ“–Read
πŸ“„PapersπŸ“°Blogs🎬Courses
πŸ’‘Learn
πŸ›€οΈPathsπŸ“šTopicsπŸ’‘Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers2

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#Diffusion Transformers

Implicit Neural Representation Facilitates Unified Universal Vision Encoding

Intermediate
Matthew Gwilliam, Xiao Wang et al.Jan 20arXiv

This paper introduces HUVR, a single vision model that can both recognize what’s in an image and reconstruct or generate images from tiny codes.

#Implicit Neural Representation#Hyper-Networks#Vision Transformer

Trainable Log-linear Sparse Attention for Efficient Diffusion Transformers

Beginner
Yifan Zhou, Zeqi Xiao et al.Dec 18arXiv

This paper introduces Log-linear Sparse Attention (LLSA), a new way for Diffusion Transformers to focus only on the most useful information using a smart, layered search.

#Log-linear Sparse Attention#Hierarchical Top-K#Hierarchical KV Enrichment