๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers2

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#Exploration

Rethinking the Trust Region in LLM Reinforcement Learning

Intermediate
Penghui Qi, Xiangxin Zhou et al.Feb 4arXiv

The paper shows that the popular PPO method for training language models is unfair to rare words and too gentle with very common words, which makes learning slow and unstable.

#Reinforcement Learning#Proximal Policy Optimization#Trust Region

AT$^2$PO: Agentic Turn-based Policy Optimization via Tree Search

Intermediate
Zefang Zong, Dingwei Chen et al.Jan 8arXiv

AT2PO is a new way to train AI agents that work in several turns, like asking the web a question, reading the result, and trying again.

#Agentic Reinforcement Learning#Turn-level Optimization#Tree Search