๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers2

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#Large Reasoning Models

Adaptive Ability Decomposing for Unlocking Large Reasoning Model Effective Reinforcement Learning

Intermediate
Zhipeng Chen, Xiaobo Qin et al.Jan 31arXiv

This paper teaches a model to make its own helpful hints (sub-questions) and then use those hints to learn better with reinforcement learning that checks answers automatically.

#RLVR#Large Reasoning Models#Sub-question Guidance

When Reasoning Meets Its Laws

Intermediate
Junyu Zhang, Yifan Sun et al.Dec 19arXiv

The paper proposes the Laws of Reasoning (LORE), simple rules that say how much a model should think and how accurate it can be as problems get harder.

#Large Reasoning Models#Laws of Reasoning#Compute Law