๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers1

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#Multi-Head Linear Attention

MHLA: Restoring Expressivity of Linear Attention via Token-Level Multi-Head

Intermediate
Kewei Zhang, Ye Huang et al.Jan 12arXiv

Transformers are powerful but slow because regular self-attention compares every token with every other token, which grows too fast for long sequences.

#Multi-Head Linear Attention#Linear Attention#Self-Attention