๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers2

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#RAG Robustness

NAACL: Noise-AwAre Verbal Confidence Calibration for LLMs in RAG Systems

Intermediate
Jiayu Liu, Rui Wang et al.Jan 16arXiv

The paper studies why large language models (LLMs) sound too sure of themselves when using retrieval-augmented generation (RAG) and how to fix it.

#Retrieval-Augmented Generation#Confidence Calibration#Expected Calibration Error

OpenDecoder: Open Large Language Model Decoding to Incorporate Document Quality in RAG

Intermediate
Fengran Mo, Zhan Su et al.Jan 13arXiv

OpenDecoder teaches large language models (LLMs) to pay more attention to better documents during Retrieval-Augmented Generation (RAG).

#Retrieval-Augmented Generation#LLM Decoding#Attention Modulation