πŸŽ“How I Study AIHISA
πŸ“–Read
πŸ“„PapersπŸ“°Blogs🎬Courses
πŸ’‘Learn
πŸ›€οΈPathsπŸ“šTopicsπŸ’‘Concepts🎴Shorts
🎯Practice
🧩Problems🎯Prompts🧠Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers2

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#SDAR

FourierSampler: Unlocking Non-Autoregressive Potential in Diffusion Language Models via Frequency-Guided Generation

Intermediate
Siyang He, Qiqi Wang et al.Jan 30arXiv

Diffusion language models (dLLMs) can write text in any order, but common decoding methods still prefer left-to-right, which wastes their superpower.

#diffusion language models#non-autoregressive generation#frequency-domain analysis

Residual Context Diffusion Language Models

Intermediate
Yuezhou Hu, Harman Singh et al.Jan 30arXiv

Diffusion language models (dLLMs) generate several tokens at once but usually throw away lots of helpful clues each stepβ€”RCD keeps and reuses those clues.

#diffusion language models#residual context diffusion#soft tokens