๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers4

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#code generation

LatentMem: Customizing Latent Memory for Multi-Agent Systems

Intermediate
Muxin Fu, Guibin Zhang et al.Feb 3arXiv

LatentMem is a new memory system that helps teams of AI agents remember the right things for their specific jobs without overloading them with text.

#multi-agent systems#latent memory#role-aware memory

FourierSampler: Unlocking Non-Autoregressive Potential in Diffusion Language Models via Frequency-Guided Generation

Intermediate
Siyang He, Qiqi Wang et al.Jan 30arXiv

Diffusion language models (dLLMs) can write text in any order, but common decoding methods still prefer left-to-right, which wastes their superpower.

#diffusion language models#non-autoregressive generation#frequency-domain analysis

BatCoder: Self-Supervised Bidirectional Code-Documentation Learning via Back-Translation

Intermediate
Jingwen Xu, Yiyang Lu et al.Jan 30arXiv

BatCoder teaches a code model to write both code and its documentation by doing a round trip: from code to docs and back to code.

#back-translation#self-supervised learning#reinforcement learning for code

Stable-DiffCoder: Pushing the Frontier of Code Diffusion Large Language Model

Intermediate
Chenghao Fan, Wen Heng et al.Jan 22arXiv

Stable-DiffCoder is a code-focused diffusion language model that learns to write and edit programs by filling in masked pieces, not just predicting the next token.

#diffusion language model#block diffusion#code generation