๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers2

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#context isolation

WideSeek-R1: Exploring Width Scaling for Broad Information Seeking via Multi-Agent Reinforcement Learning

Intermediate
Zelai Xu, Zhexuan Xu et al.Feb 4arXiv

WideSeek-R1 teaches a small 4B-parameter language model to act like a well-run team: one leader plans, many helpers work in parallel, and everyone learns together with reinforcement learning.

#width scaling#multi-agent reinforcement learning#orchestration

Learning from Next-Frame Prediction: Autoregressive Video Modeling Encodes Effective Representations

Beginner
Jinghan Li, Yang Jin et al.Dec 24arXiv

This paper introduces NExT-Vid, a way to teach a video model by asking it to guess the next frame of a video while parts of the past are hidden.

#autoregressive video pretraining#masked next-frame prediction#context isolation