๐ŸŽ“How I Study AIHISA
๐Ÿ“–Read
๐Ÿ“„Papers๐Ÿ“ฐBlogs๐ŸŽฌCourses
๐Ÿ’กLearn
๐Ÿ›ค๏ธPaths๐Ÿ“šTopics๐Ÿ’กConcepts๐ŸŽดShorts
๐ŸŽฏPractice
๐ŸงฉProblems๐ŸŽฏPrompts๐Ÿง Review
Search
How I Study AI - Learn AI Papers & Lectures the Easy Way

Papers3

AllBeginnerIntermediateAdvanced
All SourcesarXiv
#transfer learning

MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents

Intermediate
Haozhen Zhang, Quanyu Long et al.Feb 2arXiv

MemSkill turns memory operations for AI agents into learnable skills instead of fixed, hand-made rules.

#memory skills#LLM agents#skill bank

EEG Foundation Models: Progresses, Benchmarking, and Open Problems

Intermediate
Dingkun Liu, Yuheng Chen et al.Jan 25arXiv

This paper builds a fair, big playground (a benchmark) to test many EEG foundation models side-by-side on the same rules.

#EEG foundation models#brain-computer interface#self-supervised learning

One Sample to Rule Them All: Extreme Data Efficiency in RL Scaling

Beginner
Yiyuan Li, Zhen Huang et al.Jan 6arXiv

This paper shows that training a language model with reinforcement learning on just one super well-designed example can boost reasoning across many school subjects, not just math.

#polymath learning#one-shot reinforcement learning#GRPO