All Topics
πŸ€–Machine Learning
🎯

Supervised Learning

Master classification and regression algorithms from fundamentals to advanced techniques

🌱

Beginner

Beginner

Understand core supervised learning concepts

What to Learn

  • β€’Classification vs regression tasks
  • β€’Linear regression: intuition and math
  • β€’Logistic regression for classification
  • β€’Train/test split and cross-validation
  • β€’Evaluation metrics: accuracy, precision, recall, F1

Resources

  • πŸ“šCoursera ML by Andrew Ng (weeks 1-3)
  • πŸ“šScikit-learn documentation tutorials
  • πŸ“šKaggle Learn: Intro to ML
🌿

Intermediate

Intermediate

Apply diverse ML algorithms

What to Learn

  • β€’Decision trees and Random Forests
  • β€’Support Vector Machines (SVM)
  • β€’Gradient Boosting (XGBoost, LightGBM)
  • β€’Feature engineering techniques
  • β€’Hyperparameter tuning strategies

Resources

  • πŸ“šHands-On Machine Learning (GΓ©ron) Ch 1-7
  • πŸ“šXGBoost documentation
  • πŸ“šKaggle competitions for practice
🌳

Advanced

Advanced

Deep supervised learning expertise

What to Learn

  • β€’Ensemble methods and stacking
  • β€’AutoML and neural architecture search
  • β€’Handling imbalanced datasets
  • β€’Calibration and uncertainty quantification
  • β€’Model interpretability (SHAP, LIME)

Resources

  • πŸ“šElements of Statistical Learning
  • πŸ“šInterpretable ML book by Molnar
  • πŸ“šResearch papers on specific algorithms